47 research outputs found

    A spatial covariance (123)I-5IA-85380 SPECT study of α4β2 nicotinic receptors in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is characterized by widespread degeneration of cholinergic neurons, particularly in the basal forebrain. However, the pattern of these deficits and relationship with known brain networks is unknown. In this study, we sought to clarify this and used 123I-5-iodo-3-[2(S)-2-azetidinylmethoxy] pyridine (1235IA-85380) single photon emission computed tomography to investigate spatial covariance of α4β2 nicotinic acetylcholine receptors in AD and healthy controls. Thirteen AD and 16 controls underwent 1235IA-85380 and regional cerebral blood flow (99mTc-exametazime) single photon emission computed tomography scanning. We applied voxel principal component (PC) analysis, generating series of principal component images representing common intercorrelated voxels across subjects. Linear regression generated specific α4β2 and regional cerebral blood flow covariance patterns that differentiated AD from controls. The α4β2 pattern showed relative decreased uptake in numerous brain regions implicating several networks including default mode, salience, and Papez hubs. Thus, as well as basal forebrain and brainstem cholinergic system dysfunction, cholinergic deficits mediated through nicotinic acetylcholine receptors could be evident within key networks in AD. These findings may be important for the pathophysiology of AD and its associated cognitive and behavioral phenotypes

    The segregated connectome of late-life depression: a combined cortical thickness and structural covariance analysis.

    Get PDF
    Late-life depression (LLD) has been associated with both generalized and focal neuroanatomical changes including gray matter atrophy and white matter abnormalities. However, previous literature has not been consistent and, in particular, its impact on the topology organization of brain networks remains to be established. In this multimodal study, we first examined cortical thickness, and applied graph theory to investigate structural covariance networks in LLD. Thirty-three subjects with LLD and 25 controls underwent T1-weighted, fluid-attenuated inversion recovery and clinical assessments. Freesurfer was used to perform vertex-wise comparisons of cortical thickness, whereas the Graph Analysis Toolbox (GAT) was implemented to construct and analyze the structural covariance networks. LLD showed a trend of lower thickness in the left insular region (p < 0.001 uncorrected). In addition, the structural network of LLD was characterized by greater segregation, particularly showing higher transitivity (i.e., measure of clustering) and modularity (i.e., tendency for a network to be organized into subnetworks). It was also less robust against random failure and targeted attacks. Despite relative cortical preservation, the topology of the LLD network showed significant changes particularly in segregation. These findings demonstrate the potential for graph theoretical approaches to complement conventional structural imaging analyses and provide novel insights into the heterogeneous etiology and pathogenesis of LLD.This work was supported by the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, and the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Newcastle upon Tyne Hospitals NHS Foundation Trust and the Newcastle University. Elijah Mak was in receipt of a Gates Cambridge, PhD studentship.This is the author accepted manuscript. It first appeared from Elsevier at http://dx.doi.org/10.1016/j.neurobiolaging.2016.08.013

    Cholinergic and perfusion brain networks in Parkinson disease dementia.

    Get PDF
    OBJECTIVE: To investigate muscarinic M1/M4 cholinergic networks in Parkinson disease dementia (PDD) and their association with changes in Mini-Mental State Examination (MMSE) after 12 weeks of treatment with donepezil. METHODS: Forty-nine participants (25 PDD and 24 elderly controls) underwent (123)I-QNB and (99m)Tc-exametazime SPECT scanning. We implemented voxel principal components (PC) analysis, producing a series of PC images of patterns of interrelated voxels across individuals. Linear regression analyses derived specific M1/M4 and perfusion spatial covariance patterns (SCPs). RESULTS: We found an M1/M4 SCP of relative decreased binding in basal forebrain, temporal, striatum, insula, and anterior cingulate (F1,47 = 31.9, p < 0.001) in cholinesterase inhibitor-naive patients with PDD, implicating limbic-paralimbic and salience cholinergic networks. The corresponding regional cerebral blood flow SCP showed relative decreased uptake in temporoparietal and prefrontal areas (F1,47 = 177.5, p < 0.001) and nodes of the frontoparietal and default mode networks (DMN). The M1/M4 pattern that correlated with an improvement in MMSE (r = 0.58, p = 0.005) revealed relatively preserved/increased pre/medial/orbitofrontal, parietal, and posterior cingulate areas coinciding with the DMN and frontoparietal networks. CONCLUSION: Dysfunctional limbic-paralimbic and salience cholinergic networks were associated with PDD. Established cholinergic maintenance of the DMN and frontoparietal networks may be prerequisite for cognitive remediation following cholinergic treatment in this condition.Medical Research Council UK [grant number G9817682], and by the National Institute for Health Research (NIHR) Research for Public Benefit, Wellcome Trust (WT088441MA Fellowship funding J-P.T). NIHR Dementia Biomedical Research Unit at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge. The NIHR Newcastle Biomedical Research Centre in Ageing and Chronic Disease and Biomedical Research Unit in Lewy Body Dementia based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University.This is the final version of the article. It first appeared from Wolters Kluwer via http://dx.doi.org/10.​1212/​WNL.​000000000000283

    Quantifying test–retest reliability of repeated objective attentional measures in Lewy body dementia

    Get PDF
    Objective cognitive impairment is a feature of Lewy body dementia (LBD), and computerised attentional tasks are commonly used as outcome measures in interventional trials. However, the reliability of these measures, in the absence of interventions, are unknown. This study examined the reliability of these attentional measures at short-term and longer-term follow-up stages. LBD patients (n = 36) completed computerised attentional tasks (Simple and Choice Reaction Time, and Digit Vigilance (SRT, CRT, DV)) at short-term (Day 0 – Day 5) and longer-term (4 and 12 weeks) follow-up. Intra-class correlations (ICCs) were calculated to assess test-retest reliability. At short-term, the reciprocal SRT, CRT and DV mean reaction time to correct answers, the reciprocal DV coefficient of variation, and reciprocal power of attention (PoA) all showed excellent levels of reliability (all ICCs > 0.90). The reciprocal PoA showed the highest level of reliability (ICC = 0.978). At longer-term follow-up, only the reciprocal PoA had excellent levels of reliability (ICC = 0.927). Reciprocal SRT, CRT and DV reaction time to correct answers, and the CRT coefficient of variation values, showed good levels of test-retest reliability (ICCs ≥ 0.85). Contrary to expectations, most attentional measures demonstrated high levels of test-retest reliability at both short-term and longer-term follow-up time points. The reciprocal PoA composite measure demonstrated excellent levels of test-retest reliability, both in the short-term and long-term. This indicates that objective attentional tasks are suitable outcome measures in LBD studies and that the composite PoA measure may offer the highest levels of reliability

    Longitudinal diffusion tensor imaging in dementia with Lewy bodies and Alzheimer's disease.

    Get PDF
    OBJECTIVE: Changes in the white matter of dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) have been reported using diffusion weighted MRI, though few longitudinal studies have been done. METHODS: We performed diffusion weighted MRI twice, a year apart on 23 AD, 14 DLB, and 32 healthy control subjects. Mean diffusivity (MD) and fractional anisotropy (FA) were calculated. RESULTS: In AD, there were widespread regions where the longitudinal MD increase was greater than in controls, and small areas in the parietal and temporal lobes where it was greater in AD than DLB. In AD, decrease in brain volume correlated with increased MD. There were no significant differences in progression between DLB and controls. CONCLUSIONS: In AD the white matter continues to degenerate during the disease process, whereas in DLB, changes in the white matter structure are a relatively early feature. Different mechanisms are likely to underpin changes in diffusivity.The study was supported by the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge, and the NIHR Biomedical Research Unit in Dementia and the Biomedical Research Centre awarded to Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University. Elijah Mak was in receipt of a Gates Cambridge PhD studentship.This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.parkreldis.2016.01.00

    Does attentional dysfunction and thalamic atrophy predict decline in dementia with Lewy bodies?

    Get PDF
    INTRODUCTION: To evaluate the clinical characteristics of DLB subjects who died within 1 year of assessment compared to those who survived and investigate their patterns of in vivo regional thalamic atrophy using structural MRI. METHODS: Seventy subjects (35 DLB, 35 aged controls) underwent 3 T T1-weighted MR scanning as well as clinical and cognitive assessments, including a computerised assessment of attention. All subjects were contacted after 12 months for reassessment. For both hemispheres, using FSL FIRST, the thalamus was automatically segmented followed by inter-subject vertex-wise analyses involving group comparisons and behavioural correlates. RESULTS: There was significant bilateral atrophy in the ventral-dorsal and pulvinar regions in DLB relative to controls (pcorrected < 0.05). The DLB group was then re-categorised based on 12-month mortality data: DLB-a (n = 26) and DLB-d (n = 9) (a = alive, d = death within 12 months of study assessment). Compared to controls, significant attentional dysfunction and bilateral atrophy of the pulvinar, ventral and dorsal nuclei were observed in DLB-d (pcorrected < 0.05), whereas in DLB-a, atrophy was far less extensive. CONCLUSIONS: Distinct patterns of thalamic atrophy occur in DLB that may relate to the attentional dysfunction and cognitive fluctuations that characterise this disorder. Relative to controls, the extent of attentional impairment and pattern of thalamic degeneration differ in those patients who died within 12 months of assessment, despite having an otherwise similar level of dementia severity. These findings may provide insight into the neurobiological changes underpinning important clinical characteristics and disease heterogeneity

    Grey matter atrophy in prodromal stage of dementia with Lewy bodies and Alzheimer’s disease

    Get PDF
    BACKGROUND: Little is known about the patterns of brain atrophy in prodromal dementia with Lewy bodies (pro-DLB). METHODS: In this study, we used SPM8 with diffeomorphic anatomical registration through exponentiated lie algebra to measure grey matter (GM) volume and investigate patterns of GM atrophy in pro-DLB (n = 28) and prodromal Alzheimer's disease (pro-AD) (n = 27) and compared and contrasted them with those in elderly control subjects (n = 33) (P ≤ 0.05 corrected for family-wise error). RESULTS: Patients with pro-DLB showed diminished GM volumes of bilateral insulae and right anterior cingulate cortex compared with control subjects. Comparison of GM volume between patients with pro-AD and control subjects showed a more extensive pattern, with volume reductions in temporal (hippocampi and superior and middle gyri), parietal and frontal structures in the former. Direct comparison of prodromal groups suggested that more atrophy was evident in the parietal lobes of patients with pro-AD than patients with pro-DLB. In patients with pro-DLB, we found that visual hallucinations were associated with relative atrophy of the left cuneus. CONCLUSIONS: Atrophy in pro-DLB involves the insulae and anterior cingulate cortex, regions rich in von Economo neurons, which we speculate may contribute to the early clinical phenotype of pro-DLB.This study was funded by Appel à Projet Interne (API) of the University Hospital of Strasbourg, Alsace Alzheimer 67, Fondation Université de Strasbourg and famille Jean Amrhein, and Projet Hospitalier de Recherche Clinique (PHRC) inter-régional (IDRCB 2012-A00992-41). The work was also supported by the following: the Newcastle Healthcare Charity (BH0070250); Academy of Medical Sciences, Wellcome Trust Starter Grants scheme for Clinical Lecturers (BH090112 to JPT); Wellcome Intermediate Clinical Fellowship (BH083281 to JPT); National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre in Ageing and Chronic Disease and Biomedical Research Unit in Lewy Body Dementia, based at Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University; NIHR Dementia Biomedical Research Unit at Cambridge University Hospitals NHS Foundation Trust and the University of Cambridge
    corecore